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A thermodynamic interpretation is given of the phenomenon of the loss of evol- 

utionarity in the hydrodynamics equations of viscoelastic incompressible fluids 

corresponding to models proposed in [ 1, 21. 
A Clausius inequality is formulated for the virtual perturbations of the equili- 

brium parameters on the basis of the second law of thermodynamics and propo- 

sitions on the local thermodynamic equilibrium in a small particle of a contin- 

uous medium [3]. 
Properties of reversible instantaneous deformations in the considered media 

are investigated and the form of the integral energy is found. The internal energy 
in the Oldroyd models [l] depends on the first invariant of the viscoelastic stress 

tensor, but can also be expressed in terms of the reversible strain components. 
In the De Witt model [Z] it depends on the second invariant of the stress tensor 
and is nonlocal relative to the reversible strain. 

Necessary conditions for the thermodynamic stability are obtained by using 
the expressions found for the internal energy and the Clausius inequality. Con- 
straints on the principal values of the viscoelastic stress tensor result from these 
conditions which have been established earlier on the basis of demands for the 

evolutionarity of the corresponding systems of hydrodynamics equations [4, 51. 

1. Clau8iu1 inequality ELI a requirement for the 8trb;llity of the 
local thermodynrmlc equilibrium of an alcmsnt of 8 contlnuoul 
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medium, In describing the processes taking place at a fixed material particle, let 
us use the Lagrange coordinate system ci with moving covariant basis ai (t.) and contra- 
variant basis ai (t).The metric tensors in the initial and strain states are defined by the 

formulas [S] 

c;, = g~jo~~~~~~ zzz g,ifB .Oa .* ? 3, G = g,jaW = gi’5iaj, Bio =: ai (to), ao” := $ (to) 

gij” = (BiO, ajo), goij = (a oi, 3Oj), g,j = (3i, aj), g” :5 (8i, 3’) 

Measuring the magnitude of the strain from the instant t = t,, let us introduce the Green’s 

finite strain tensors 

8 * =E.. &JEe 23* *iJ3i3j, p = Eij*3i3i = Eii*aiaj 

Eij* = '/z(gij - gijo)t 
E+j* = Ijz(goii _ gij) (1.1) 

The tensors E* and e* are distinct. Besides these tensors, let us use the Hencky finite 

strain tensor H = 1/2 In (G + 2~“) = - “is In (G - 2~) 
The principal values of the tensors 8*, 8* and H denoted, respectively, by Ed*, ei* 
and hi, are interrelated by the formulas 

ei* = ‘/2 (1 - e-‘“*), P,** = ‘/2 (e2hi - I), (I + 2Ei*) (I - 2~) = 1 (f-2) 
We represent the stress tensor P as 

p (E*, t) z $jsiaj = p.j**~iaj = pd’Biaj = J3@*d (1.3) 

Let us examine some consequences of the laws of thermodynamics not related to a 
specific choice of the model of the continuous medium. Following (31, we assume that 
the state of a physically infinitesimal macroscopic volume at an arbitrary time can be 

considered as thermodynamic equilibrium. This state is characterized by a set of gov- 

erning parameters on which the internal energy and entropy depend in a unique manner, 

We assume that the thermodynamic state of the medium is determined by assigning the 

stress tensor P and the absolute temperarure T. 
Let us examine the virtual perturbations of the equilibrium prameters which transfer 

a particle into the state 0’0 + 6P, T, i- 6T) with the value U, + 6U for the spe- 
cific internal energy and S, $ 6s for the specific entropy. We shall limit ourselves 
to an analysis of the local perturbations by considering the thermodynamic parameters 

on the outer boundary of the particle to equal the unperturbed parameters P,, To. If the 
initial state of a small particle with the parameters P,, If’, is stable, then in the case 
of sufficiently small ~rturbations this state should be reproduced because of the sponta- 
neous process of interaction with the external medium. 

Let us take the traditional scheme in classical thermodynamics by replacing the medium 
surrounding the particle by a thermostat with the invariant parameters P,,, 7’0 and con- 
sidering that the thermostat together with the particles form an adiabatically insulated 
system 16, 73. Therefore, the mechanical effect of the thermostat on the particle redu- 
ces to the effect of the external surface forces on its boundary, governed by the tensor 
PO, The process of building up complete thermodynamic equilibrium in the particIe- 
thermostat system will be irreversible. The transition (P, + 6P, To + 62’) --+ (P,, 
To) hence occurs, and therefore the transition (U, + OCT, s, + 8s) -+ (UO, J;f- 

The classical Clausius inequality AZ > AQ / T, is valid for an irreversible process, 
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where As and AQ are the change in entropy and the quaRti~ of heat absorbed from 
the thermostat per unit mass of the particle. Using the first law of thermodynamics, we 
reduce the Clausius inequality to 

AQ = AU - L\A, < T& (1.4) 

Here AA, is the work per unit mass of the external surface forces on the strains induced 
by the transition (PO + 6P, T, -+ 6 T) -+ (PO, T,). The real process of equilibrium 

build-up in the system proceeds in the direction (us + 6u, s, + 6s) -+ (us, So), 
hence we replace the true by virtual increments in the last inequality, hence reversing 

the sign of the inequality 

NJ--A, - T&>O (4.5) 

This inequality is basic to the investigation of the stability of local thermodynamic 
equilibrium. 

In passing from (1.4) to (1.5) it was assumed that AA, = - SA,. This is true in 

the case of an irreversible thermodynamic. build-up process in which the strains during 

the transition (PO 4 6P, To + 6T) * (PO, T,) differ only in sign from the strains 

corresponding to the reverse transition. Such strains should be considered reversible, 

keeping in mind that they are indeed realized in the reversible process connecting the 

equilibrium states (P, + 6P, To -k 6T) and (P,,, T,). If the work AA, is not determ- 
ined by the magnitude of the final strain and depends on the strain history, then the 

equality AA, = - 6A, is satisfied when all the same strain stages occur in the reverse 
direction as in the direct process. 

The existence and nature of the reversible strains depend on the specific model of the 

medium. For example, in a viscous incompressible fluid the reversible strains are gen- 

erally missing, and we must set &A, = 0 in (1.5). In an ideal gas, any strain reducing 

to a change in density can be achieved by reversible means, and in this case (1.5) be- 

comes 6U+p,&(i/p)- To&>0 (1 .ti) 

This inequality has been discussed repeatedly in the literature r6, 71. In particular, the 
condition of the minimum internal energy in the stable equilibrium state with respect 

to processes with invariant density and entropy results therefrom. The possibility of using 
this extremal property to determine the stability conditions in a multicom~nent gas 

mixture was indicated in [3]. These ideas have been developed in [8]. 

Thermodynamic inequalities assuring the stability of local equilibrium have usually 

been established for an ideal gas model. In particular, the equilibrium condition (&s I 
/ ap), > 0, which is simultaneously the evolutionary condition for the gasdynamics equ- 
ations [9], follows from (1.6). This latter circumstance permits the assumption that the 
evolutionary conditions of the equations of mechanics of certain other media can also 
be obtained by starting from the demands for ~ermodynamic stability. 

In deriving the stability conditions from (1.5) it is necessary to know the expression 
for the virtual work SA, and for the variation in the internal energy 6U. 

It can be shown that when the external surface forces on the particle boundary are 
determined by the invariant tensor P, during strain, the work element in a time dt has 

the form rlA, = (2~)~~ ,D*~’ clgij (I.7 
In this formula P! are the components of the constant tensor P, in the variable basis 
Bi* The increments dg,j should only be associated with the reversible strains. In the 
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simplest case, when triaxial compression- tension occurs along the principal axes of the 
tensor P, in all stages of the strain process, (1.7) reduces to 

dA, = +‘,dH, + $ i p;dh,’ 
i=l 

H,=SpH, H’ = H - ~I~H~G, p = poe-Hl v.9 

Here H is the Hencky reversible strain tensor, H’ is the deviator of the Hencky tensor, 

pi0 and hi’ are the principal values If the tensor P,, and H’ respectively. 

In the general case the expression (1. 8) for c&l, is not a total differential, and the 

total virtual work 
Iii jotag* j 

6A, = J dA, 
gij” 

depends on the strain process. However, in two important particular cases 6A, is deter- 

mined by the final strains. 
The first case corresponds to the global tensor PO = - poGo. Then the sum in the 

right side of (1.8) equals zero, and integrating we arrive at the simple formula: &l, = 
= - pa6 (1 / p),which always holds for an ideal fluid. 

The second case corresponds to the incompressible medium: p = p o, H’ = H’, 
Then 

6A, = + .i pi=‘6hi 
I==1 

Precisely this case is of intereat for the viscoelastic fluid models to be examined below. 
Taking account of the last formula for &l,,the inequality (1.5) applied to a coaxial 
strain process can be written as 

3 

MY-$; nioGhi - To& > 0 
i-1 

(I.9 

Here the quantities xi0 equal to the principal values of the tensor ‘II, = PO -b P&O 
are used in place of pi0 . Such a substitution is admissible because of the condition 
6H, = 0. 

2. InItantaneour ctrainc and internal energy in vircoclr#tic 
Maxwellian media, The stress tensor in the viscoelastic fluids under consideration 

is p = _ pi + fl, n E fiijaiai = an.j*-aiaj = ~+4Aj = TC~$~ 

In the general case the viscoelastic stress tensor JJ is not a deviator. We denote the 
principal values of the tensor 11 by fi* in decreasing order so that ni > nz > ns. 

In Lagrange coordinates, the rheological equations of the Oldroyd “contravariant” and 
“covariant” models are the following, respectively: 

dr&j 
dt 

The De Witt model is described by the rheological equation 

(2.2) 

The symbol d / dt in these equations denotes differentiation with respect to time for 
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fixed Lagrange coordinates. migrating (2. l), (2.2) with the initial condition II (E;i , 

ts) = Tf, @), we can obtain hereditary relationships governing the stare of stress at 
the time t in terms of the initial tensor II, and the strain history gij (t’) in the inter- 

val t, < t < r. 
The instantaneous strains corresponding to a jump change in the basis vectors rsi can 

be considered in viscoelastic liquids of Maxwell type. This property of media possessing 
instantaneous elasticity predicts the linear theory of viscoelasticity [lo] in particular. 

The concept of instantaneous strain in viscoelastic media in the presence of finite strain 
is manifested in [ 11, 127, 

Let us establish the general form of the relation between the stresses and the instant- 

aneous strains for the Oldroyd model. Integrating the rheologidal equations (2.1) we 
obtain 

nij (t) = atif (to) exp (y) - /A iexp (+) ‘+dt (2.3) 

We make the formal substitution t, + t - At, t + t + At in (2.3) and examine 
a continuous law of variation of the metric tensor components gii = gij (t’, At) such 
that the limit functions 

gij (t’) = if: gif (t’, At) 

would be discontinuous at t’ = t and hence(gil) -_ gij (t -I- 0) - gij (t - O).Then 

passing to the limit as At -+ 0 in (2.3) we obtain for the contravariant and covariant 
models, respectively, 

nij = a,ij + 2p,&i* 

nii = J@ (t + O), nOQ = nif (t - 0), 2.3ii* = - wjj (24 

$j = Xij’ + 2p.Eij* 

TCt:J = Xij (t + 0)~ JliT =5 3tij (t - 0)~ 2eij* = {gij} 

Let us note that the relationships between the stresses and instantaneous strains (2.4) are 
exactly the relationships between the stresses and strains in hypoelastic media. The equ- 

ations of hypoelastic media are obtained by discarding the terms nij / 5 or Ztj / h in 

(2. I). The discarded terms model the viscous components in the Maxwell elements and 
are negligible for instantaneous strains since a finite time is necessary for the develop- 

ment of viscous strain. 
Let the initial Lagrange basis be orthonormal and directed along the principal axes of 

the tensor II,. Then it is seen from (2.4) that the matrices 11 nii IJ or 11 %j \\ are diagonal 

if and only if the initial orthonormal basis zrio directed along the principal axes of the 

sensor X&, goes over into the orthogonal basis a; as a result of strain. Therefore, the 
principal stress and strain axes may be distinct after the ins~ntaneous strain. This fact 
dropped out of the field of view of investigations on the instantaneous strains because of 
the tendency to consider an isotropic initial state of stress [ll]. Meanwhile, an anisotr- 

epic state of stress of a viscoelastic material influences its subsequent behavior strongly 

153, especially for instantaneous strains when the initial state is not successfully obliter- 

ated in the memory of the medium. 

In the case of the isotropic tensor n, = n&e the principal axes of the tensors n, 
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e* and e, coincide. Only the diagonal elements of the matrices 11 Tlti \I and \I 8ii* 11 
as well as the matrices 11 Xij 11 and 11 &ii* 11 can differ from zero in the basis ni directed 

along these principal axes. In this case we obtain, respectively, from (2.4) 

rci = 3t, -+ 2 (/A -1 no) ai* = x, -I- (p !- qJ(pi _ 1) 

SXi = TI, + Z fp - LXof Ei, = 3X, -1-e (p - n,) (1 - <-21fi) 

In deducing the relationships written down we have used the rules of passing from the 
contravariant and covariant components of the tensor l-f in the orthogonal bases ni and 

a” to the principal values of this tensor 

7tt, = Xaag,a c: 7Caa (1 !- 2E,*), nI, = n,,gxa = 51,, (l- 2&J 

Summation is not carried out over the repeated indices in these tatter formulas. 

It is seen from the relationships established that in the case no < - p the additional 

compressive stress resultant in the principal direction rt; < n0 should result in elastic 
elongation of the fiber in the material corresponding to the contravariant model. In the 

case X, > p the additional tensile stress resultant ni > no will result in contraction 

of the principal fiber in the covariant model. The result obtained does not agree with 
the customary properties of elastic media although it also does not contradict the laws 
of mechanics. It will be seen later that such an anomaIous behavior of viscoelastic media 
is forbidden by the stability requirements for local thermodynamic equilibrium. 

Let us assume that the instantaneous strains do not violate the initially Euclidean metric 

of the space connected with the material continuum. Then the principal values of the 
instantaneous strain tensors a*, E* and 11 should lie within the following limits [3]: 

Fi*(> - iJ2, 
%, <Z ’ ‘27 - x .I.: h [ < a. 

These inequalities for the principal values of the instantaneous strain tensors are the 
limit results of analogous inequalities which must be satisfied for arbitrarily fast continu- 

ous finite strains. Measuring the components of the tensor EI from the state corresponding 

to an isotropic viscoelastic pressure no, we obtain 

$% = (.ni * ~)j(3t0 I+ p) > 0 (2.5) 

Here and henceforth, the upper signs correspond to the contravariant, and the lower to 

the covariant models. 
Using the condition of incompressibility of the instantaneous strains, we can uniquely 

determine the isotropic viscoelastic pressure so which can be achieved by instantaneous 
strain from a state with given tensor 11 

x0 = “F p -!- I(n, 2 @)@a i: ]I) (ns rt p)P (2.6) 

Some of the thermodynamic potentials are usually given as a function of the corres- 
ponding set of equilibrium parameters [3] in a thermodynamic derivation of the equations 
of state of continuous media. The problem of seeking the inner or free energy by means 
of given equations of state arises in postulating the governing equations. This problem 
reduces to integrating the Gibbs equation 

dUzzz- d/l,’ i_ Tds = p--l@ do* -+ Tds 

Here d@j* are the increments of the covariant components of the reversible strain tensor 
E* and dAi’ is the work element of the internal stresses on the reversible strains. 

The rheological equations (2.1). (X.2) do not contain the absolute temperature or 



Equations of the mechanics of viscoelastlc media of Maxwell type 289 

entropy. In fact, these equations are used in that temperature range in which the rheo- 
logical constants h and n can be considred constanf The reversible work of the internal 
forces dd$ is independent of the entropy in this case, hence the quantity Z’ds must be 

a total differential, i.e. the entropy should depend only on the temperature and can be 

determined if the specific heat of an incompressible medium cV (2’) is given. 

The models (2.1). (2.2) are often used to describe the flows of solutions and polymer 
melts. Mention of the entropy nature of elasticity in some polymer fluids can be encount- 
ered in the literature. There is usually kept in mind here that in isothermal flows the 

change in internal energy is negligibly small and the reversible work of the internal 

stresses only result in a change in entropy. Then the relationships 

dU=O, - d%s = To ds = dAir (F=U-Ts) 

are satisfied. Therefore, the change in entropy for constant internal energy ceases to be 
independent of the strain processes. 

Let us emphasize that the nontrivial stability conditions of the ~erm~ynamic state 

are determined essentially by the behavior of the reversible work of the internal stresses 

in the media under investigation. In fact, in the case of adiabatic virtual perturbations 

the Clausius inequality (1.5) becomes 

6IJ, -- 6‘4, = - 6.4; - 6.4, > 0 

If,however,the elasticity is of entropy nature, the inequality (X.5) can be written as 

-&A,-To&=--&A,-6A,‘>o 

In both cases precisely the analysis of the variations &lir permits extraction of the class 
of unstable states. 

It follows from the form of the rheological equations (2.1). (2.2) and the Gibbs rela- 
tionship that the strain part, independent of the entropy, and the part dependent only on 

the entropy, enter additively into the expression for the internal energy, 
bet us examine a reversible adiabatic instantaneous strain process for Oldroyd media. 

The reversible character of the instantaneous strains follows from (2.4). These relation- 
ships predict conservation of the length & of an arbitrary material fiber in the jump- 

like “loading-unloading” process. The Gibbs equation for an infinitesimal adiabatic 

instantaneous strain is 

du, = dFT = (2~)~’ 3ti’ dgtj (2.7) 

We obtain, respectively, for the contravariant and covariant models 

nij dg,j = d (&’ gij) = dlT, (Ill = Sp n) 

& dgij = - nijdgG = - d (qjg”i) z - &II, 

The incompressibility condition giQgij = 0 as well as the equality g,&tii = 0 or 

g” dnij = 0 following from the first or second group of the relationships (2.4) were 

used in deducing the last two formulas. Hence, (2.7) becomes 

dU, = dFr = I+ f2~)-~ da, 

Therefore, the following formulas are valid for the finite changes in the strain parts of 
the internal and free energies in Oldrovd media: 

AU, = AFT = & (2p)-1 b& (2.59 
Using (2.4). the AU, can be expressed in terms of invariants of the initial tensor no 
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and the strain tensors. For the contravariant and covariant models we obtain, respectively 

AU, = p-l SP (YE* + K,G, e, = eii* ~~~~~~ 

AU, = p-l Sp (p”* - Ii,,e”), eo = ai.i* nioajo 

The principal values of the tensors e, and 8” are ei* and ei*. Let ai*, &’ be the 
orthonormal bases of the principal axes of the tensors &,, Q, respectively. The trans- 

formation from the basis 84 to the basis ai * be given by the orthogonal matrix c = 

= 1 C*ji' 1, SO that ai* = c$’ ajo. Then the expression for AI/', can be represented in the 

contravariant model as 

Therefore, AU, depends not only on the principal values of the reversible strain tensor 

r,, but also on the principal stresses * nEi in the initial state, as well as on the angles 
made by the principal axes of the tensors e. and no. (The nine components of the orth- 
ogonal matrix C depend on the three Euler angles governing the rotation of the trihedron 

rri* relative to the trihedron aio.) The Au, for the covariant model can also be ex- 

pressed in terms of the principal values of the tensors no and 8” and the angles govern- 
ing the rotation of the principal strain axes relative to the initial principal stress axes. 

Measuring the reversible strain tensor Ef and the function U, from the initial state with 
the isotropic tensor no = n(,G,,, we obtain 

TJ, == -.& (p _t no) (ez!!zhl .-t eizhz + e W3 - 3) (2.9) 
The connection between the stresses and the reversible strains can be established in a 

De Witt medium by Jaumann integration of the relationships (2.2) [13, 141 and subse- 

quent passage to the limit to the instantaneous strain. Since the terms n;j / h in such 
a passage do not yield any contribution to the desired connection, the relationships be- 

tween the stresses and instantaneous strains can be obtained by integrating the equations 

of a hypoelastic body 

with a subsequent passage to the limit to the instantaneous strains. For infinitesimal in- 
crements in the matrices 11 = 11 TC,$’ /I and G -= 11 Rij (1 the equations of a hypoelastic 

medium are e.quivalent to the relationship 

2 dll $- G-%iG Ft - 7TG-'dG = 2 pG-'dG (2.10) 
The different matrix relation (2.10) is not holonomic. This is the essential distinction 
between the De Witt and the Oldroyd models, where the analogs of (2.10) are 

d (I1 G-l) =;I - pdG-l, d (G II) = pdG 

and are total differential equations. Hence, the stresses in the model (2.2) are not de- 
fined uniqueiy by assigning the initial state of stress and the final reversible strain, but 
are defined uniquely by the history of the reversible strain. The strain history in the 
case of instantaneous strain should be understood to be the nature of the passage to the 
limit from the continuous to the instantaneous strain. In this sense there exists a depen- 
dence of the stress on the structure of the instantaneous strain. 

We clarify the mentioned property of the De Witt model by examples which are 
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useful for the subsequent exposition. Let the principal strain axes be unchanged in the 
material for all stages of the continuous strain. Let (nij”) denote the physical compon- 

ents of the tensor II,, in the basis ai0 and (nij) the physical components of the tensor 
II in the basis %, Here 8%’ and a; are the initial and present bases of the principal strain 

axes. In the case under consideration, integration of(2.10) reduces to the formulas 

(J&J = &) 4 2l% @.zp) = @:a) @ # P) (2.11) 

These latter relationships do not depend explicitly on time and remain valid upon pass- 
age to the instantaneous strain. Formulas (2.11) are not true when the requirement of 
unchangeability of the principal strain axes in the material is violated. 

Let us consider the continuous strain of simple shear which is characterized by the 

rotation of the principal strain axes in the material. For simplicity, let us limit ourselves 
to the case of plane stress and deformable state. We direct the orthouormal two-dimen- 

sional basis r~* along the principal axes of the tensor II,, so that nro >, n2’. The vector 
a1 (t) remains equal to a, during shear strain but the vector e2 (t) is elongated and 

makes an angle 9 (t) with the vector ato so that the magnitude of the shear a (t) = 
= tg 'p (t).The state of stress at time t in a hypoelastic body is determined by integrating 

the matrix equation (2.10) with the given initial tensor II,, and the given strain history: 

The matrix G satisfies the incompressibi~~ condition: det G = 1. Since G depends only 
on the magnitude of the shear a (t), then taking a (t) as a new independent variable we 
integrate (2.10), which is equivalent to a system of ordinary differential equations in 
the elements of the matrix II. We hence obtain 

n.y = I/:! (ni’ +3X%‘) $1 p - [i/2 (n3’ -a~‘) + p] (cos a + a sin a) 

?c”; = f’/i (JCZO - sc~‘) + p] sin a, TE.;=;Z21.(1+@) +(n.;--rc;)d 

?P=lQ+XP-rr~ 
-2 (2.12) 

These formulas are valid for the instantaneous strain if the matrix G has the form men- 
tioned above during passage from the continuous to the instantaneous strain. However, 

the very same instantaneous shear strain can be obtained by passing to the limit from 
the continuous tension-compression strain along the principal axes of the tensor’ e0 and 

subsequent quasisolid rotation. Then formulas (2.11) are valid, which yield a description 
of the final state of stress distinct from (2.12) under identical initial conditions for the 

stress and the very same magnitude of the final strain. 
The universal formula for Air’, in the model (2.2) is obtained as follows. Keeping 

in mind the increments dgij in the reversibie urocess, let us write (2.7) in the form 

pdU, == iiz ~” dgij = ‘12 SP (~G-‘dG) 

We multiply (2.10) by the matrix n on the left, and we take the traces of both parts 
of the equation obtained by using the identity 

Sp (l-lG-ldG II) = Sp (PG-ldG) 

We hence obtain 

sp (tlG-ldG) = + Sp (Ud II) = & d&v 

Consequently 
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(2.13) 

This formula is valid for any process in a De Witt medium where, as in the Oldroyd 
media, the thermodynamic state is defined by the viscoelastic stress tensor and the ab- 
solute temperature. Comparing (2.13) and (2.8). we see that in contrast to the Oldroyd 
model, the internal energy in the model with the Jaumann derivative depends on the 

second rather than the first invariant of the tensor n.A greater distinction, in principle, 

is the nonlocal dependence of the internal energy on the reversible strains, i.e., the 
absence of a unique dependence of the internal energy in the medium (2.2) on the final 

reversible strain. This ambiguity can be eliminated only by involving data on the struc- 

ture of the instantaneous strain. 

In the particular case when passage to the limit from continuous strain with principal 
axes “frozen” in the material corresponds to the instantaneous strain, there follows from 

(2.11) (2.13) AU, = AF, = f- A (ht2 + hz? + h$) (2.1 i) 

This formula has been presented in [14, 151. In contrast tc (2.13) it is not universal 
and is valid only for a particular form of the reversible strain process. In substance, the 
propositions on the coaxial relation between the tensor II and the reversible strain tensor 
H and on the independence of the rheological behavior of the material from “elastic” 

rotations advanced in [14, 151 turn out to be more rigid than the consequences of the 
governing equations (2.2). 

3. Thormodynemic dorivetion of tho ovolutionerity condition. 
We establish the necessary stability conditions for the thermodynamic state in the Oldroyd 

models. Let an arbitrary state with parameters II,, T, be given. We consider a pertur- 

bed state with parameters n,-, -j- 611, T, + 6T for which the reversible strain corres- 

ponding to the transition II,, --t n, $ 6n reduces to tension-compression along the 
principal axes of the tensor a,. The Clausius inequality in the form (1.9) can be used 

in the case of coaxial deformation. The quantity 6A, is a linear form in the variation 
6hi. At the same time, according to (2. 8) the increment 6u is a linear form in 6ni. 

However, there is a nonlinear relation between the virtual increments 6ni and &, 
which follows from the relationships between the stresses and instantaneous strains. Hence, 
the expansion of the left side of (1.9) in either the independent variations 6hi or the 

independent variations 6ni contains members of second and higher orders in these 
variations. 

In the case under consideration it is convenient to expand the increment 6u in the 

variable 6hi by using the representation (2.9) for the strain part of the internal energy. 
From the condition of incompressibility of the instantaneous strains there follows h3 = 
=- (h, + k,).H ence, for definiteness, let us consider U = U (h,, hz, s). We expand 
the increment 6U near the value hi = hi’, S = so by retaining second order terms 
in the expansion 
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The zero subscript on the derivatives denotes that they are evaluated for the values 
hi = h;, s = So corresponding to the unperturbed state. Using the expression f&9), 
the relations between the quantities aiD, hi” and the isotropic unloading pressure z$, as 
well as the condition ha = - (h, + h,) we obtain a formu valid for both Oldroyd 
models 2 

It is easy to verify that the right side of (3.1) equals 6A,. Moreover, using the condition 

(~U/~~)* = T,, we see that the sum of the first order terms in (1.9) equals zero. Since 

dSU I dhiaS 3 0, we arrive at the requirement 

6hi6hj + ($$)o (6~)~ > 0 (3.2) 

The conditions of positive definiteness of the quadratic form (3.2) are in the case of the 
contravariant and covariant models 

P + % > 0, VT / k)* > 0 

Now taking account of (2.5), we see that compliance with the condition 

(3.3) 

for the contravariant model, and 
%I0 > - P (3.4) 

%” < P (3.5) 

for the covariant model is necessary and sufficient for satisfaction of the first inequality 
in (3.3). The inequalities (3.4), (3.5) agree with the evolutionari~ conditions of the 
hydrodynamics equations of corres~nding Oldroyd media, which were established in f5] 
on the basis of an anaIysis of the dispersion equations for small perturbations. 

Therefore, the possible nonevolutionarity of the dynamics equations of the Oldroyd 
media (2.1) is associated with the loss of stability of the local thermodynamic equilib- 
rium. The condition dT / ds > 0 denotes positivity of the specific heat cv I= Td? f dT 
of an incompressible material and is ordinarily satisfied for real media. The evolution- 
arity condition for the dynamics equations of the model (2.2) is also deduced from the 

Clausius inequali~ under somewhat different assump~ons. 

If the structure of the instantaneous strain is such that the principal axes of a rapidly 

changing continuous strain are always frozen in the material, Eq, (2.14) is valid for 

AU$ The application of this formula to the Clausius inequality results in a trivial con- 

dition: p > 0. This result could be forseen on the basis of (&II), which shows that ano- 
malous elastic elongation of a fiber is impossible for frozen principal strain axes when 
the compressive stress resultant is increased. 

Nonevolutionari~ of the dynamics equations of a model with a Jaumann derivative 

can only appear in investigations of flows with rotation of the principal strain axes rel- 
ative to the fluid. Hence, the reasons for nonevolutionarity of the equations correspon- 
ding to this model should be sought in the behsrvior of the internal energy under reversible 
strains, whose structure is associated with the rotation of the principal strain axes in the 
material. 

Taking account of this latter remark, let us apply the inequality (1.5) to the virtual 

instantaneous strain obtained by passing to the limit from the continuous simple shear 
strain. For such a strain the change 6u, can be expressed in terms of the principal 
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values of the tensor & and the magnitude of the shear a by using (9.19), (3.13). We 
hence obtain 

6U s z-z p-1 [l/a (n,0 - x10) -j- p] (I - cos a) (3.6) 

The virtual work 6A, on the reversible strains equals 

Here the matrix [I b-i” 11 d etermines the transition from the basis ai to the basis 3io 

It is easy to verify that 6A, = 0 in the case under consideration, Keeping first and 
second order terms in the perturbations &,, 6s in the 6Ti expansion, we reduce the 

inequality (1.5) to 
(d2U / daa),(&z)2 + (PU / &a), (6s)” > 0 (3.7) 

The derivatives with zero subscript in (3.7) are evaluated for unperturbed values of the 
parameters a = 0, s = so. The conditions 

QA, = 0, @U / &z)a = 0, (au/as)~ = T,. awaidsd 
were used in deriving (3.7). Taking account of (3.6), we arrive at the requirement 

P-l [P - l/s (n,” - n,O)l (6ay + (dT / ds), (6f) > 0 
We hence obtain 

l/a (fir0 - %O) < cl, (dT / o% > 0 (3 a 

The first of the inequalities (3.8) limits the magnitude of the maximal tangential stress 
in a De Witt medium and agrees with the evolutionarity condition for the hydrodynamics 

equations of this system [5]. 
Thus, the evolutionarity condition for a model with a Jaumann derivative is derived 

from the Clausius inequality under the assumption of applicability of the inequality for 

virtual strains with arbitrary instantaneous strain structure. In particular, the local thermo- 

dynamic state should be stable upon rotation of the principal strain axes in the material. 
Therefore, nonevolutionarity of the equations for the viscoelastic models considered 

turns out to be a consequence of incorrect assignment of the internal energy for adiabatic 
processes, or of the free energy for isothermal processes. The nature of the nonevolution- 

arity detected in the dynamics equations of a nonlinearly elastic medium is analogous 

fl61. 
However, there exists another aspect of nonevolutionarity associated with the arbitra- 

riness in the simulation of the dissipative processes, for example,in the model of a non- 
Newtonian fluid with nonlinear viscosity 1173, For such media the evolutionarity cond- 
itions can evidently be consequences of the extremal principles of the thermodynamics 
of irreversible processes. 

The author is deeply grateful to L. I. Sedov for attention to the research and for val- 
uable remarks, and also to A. G. Kulikovskii and S. A. Regirer for useful discussions. 
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